ECG LOCALISATION OF **CULPRIT VESSEL IN STEMI**

DR K V PATIL SR CARDIOLOGY CALICUT MEDICAL COLLEGE

- ECG a key test for the diagnosis and management of acute and chronic coronary syndromes
- factors determining waveforms
 - the duration of the ischemic process (acute versus evolving versus chronic)
 - extent (size and degree of transmural involvement)
 - topography (anterior versus inferior-posterior-lateral or right ventricular)
 - presence of other underlying abnormalities (e.g., prior infarction,LBBB, Wolff-Parkinson-White syndrome, or pacemaker patterns)

CORONARY CIRCULATION

LMCA

- -LAD
- -LCX
- Ramus intermedius(20%)
- RCA

Right coronary artery

- runs forward between the pulmonary trunk and the right auricle
- descends vertically in the right atrioventricular groove
- continues posteriorly along the atrioventricular groove towards crux cordis to anastomose with the left coronary artery in the posterior interventricular groove

Right coronary artery

- Atrial branches
 - artery of the sinuatrial node
- Conus artery
- -anterior ventricular branches
 - acute marginal branch
- -Posterior ventricular branches
- Posterior descending artery (PDA) and Posterolateral (PL)
 - AV node branch

LEFT MAIN CORONARY ARTERY

- usually larger than the right coronary artery
- passes forward between the pulmonary trunk and the left auricle
- enters the atrioventricular groove and divides into an anterior interventricular branch (LAD) and a circumflex branch

Left anterior descending (LAD)

anterior interventricular groove to apex of the heart to posterior interventricular groove - anastomoses with the terminal branches of the right coronary artery

(type1,2 or 3)

- diagonal branches (D1, D2...)
- septal branches (S1,S2,S3)
- small left conus artery

-Circumflex (Cx)

winds around the left margin of the heart in the atrioventricular groove

- Atrial branches (SA node 40%)
- Marginal branches (M1,M2)
- Anterior ventricular and posterior ventricular branches

• LAD :

- anterior, lateral, anterior two-thirds of septum
- frequently the inferoapical segments of the left ventricle
- proximal part of bundle branches

- RCA
 - -sinus node (60%),
 - -AV node
 - -posteromedial papillary muscle
 - inferior part of LV, RV, and variably also the posterior and lateral segments

Circumflex branch

Posterior wall and variably inferior and lateral segments

Conduction system - blood supply

The components of the conduction system and their vascular supply

- SA node RCA in 60%
- AV node RCA in 90%
- Bundle of His mainly RCA
- RBB LAD
- LBB Ant branch LAD

 L Post branch LAD & Posterior
 Desend A

Dominance

 Giving rise to posterolateral branches & PDA

• AV nodal branch

A. Left dominant

B. Right dominant

• RCA - 80%

• LCX - 10%

• Co - dominant – 10%

SEGMENT	DESCRIPTION	CASS NUMBER
Left main	From ostium of LCA until bifurcation into LAD and left Cx branches.	11
LAD proximal	Proximal to, and including, first major septal branch.	12
LAD middle	LAD immediately distal to origin of first septal branch and extending to the point where LAD forms an angle (RAO view). If this angle is not identifiable, this segment ends at one-half the distance from the first septal to the apex of the heart.	13
LAD distal	Terminal portion of LAD, beginning at end of previous segment and extending to or beyond apex	14
Major diagonal branches	LAD branches, sequentially numbered	15 first diagonal 16 second diagonal 29 third diagonal
Intermediate ramus	Branch from trifurcating left main other than proximal LAD or Cx; belongs to Cx territory.	28
Proximal Cx	Main stem of Cx from its origin from left main to and including origin of first OM branch.	18
Distal Cx	Stem of Cx distal to origin of most distal OM branch and running along posterior left atrioventricular grooves. Caliber may be small or artery absent.	19
OM branches	Cx branches, sequentially numbered	20 first OM 21 second OM 22 third OM
PL branches from Cx	PL branch originating from distal Cx	24 first PL 25 second PL 26 third PL
RCA proximal	From ostium to one-half the distance to acute margin of heart.	1
RCA mid	From end of first segment to acute margin of heart.	2
RCA distal	From acute margin of heart to origin of posterior descending artery.	3
Posterior descending	Branch running in the posterior interventricular sulcus	4 if from RCA 27 if from Cx
PL branches from RCA	Posterolateral branch originating from distal coronary artery distal to crux.	6 first PL 7 second PL 8 third PL

TABLE 20.6 Classification of Coronary Segments from SYNTAX Score

CASS, Coronary artery surgery study; LAD, left anterior descending artery; RCA, right coronary artery; Cx, circumflex artery; RAO, right anterior oblique; OM, obtuse marginal; PL, posterolateral. Modified from www.syntaxscore.com.

Source: Habib Samady, William F. Fearon, Alan C. Yeung, Spencer B. King III: Interventional Cardiology, 2nd Edition Copyright © McGraw-Hill Education. All rights reserved.

Current of injury

 Deviation of the ST segment - earliest and most consistent ECG finding during acute severe ischemia

- Acute ischemia
 - reduction in resting membrane potential, duration of action potential and rate of rise and amplitude of phase 0 in the ischemic area

 Voltage gradient between normal and ischemic zones that leads to current flow between these regions

FIGURE 268-11 Acute ischemia causes a current of injury. With predominant subendocardial ischemia (*A*), the resultant ST vector will be directed toward the inner layer of the affected ventricle and the ventricular cavity. Overlying leads therefore will record ST depression. With ischemia involving the outer ventricular layer (*B*) (transmural or epicardial injury), the ST vector will be directed outward. Overlying leads will record ST elevation.

FIGURE 12.29 A simplified scheme of the pathophysiology of ischemic ST elevation. Two basic mechanisms have been advanced to explain the ST elevation seen with acute myocardial injury. **A**, Diastolic current of injury. In this case (first QRS-T complex), the ST vector will be directed away from the relatively negative, partly depolarized ischemic region during electrical diastole (TQ segment), and the result will be primary TQ depression. Conventional alternating current ECGs "compensate" for the baseline shift, and apparent ST-segment elevation (second QRS-T complex) results. **B**, Systolic current of injury. In this scenario, the ischemic zone will be relatively positive during electrical systole because the cells are repolarized early, and the amplitude and upstroke velocity of their action potentials may be decreased. This so-called systolic injury current vector will be oriented toward the electropositive zone, and the result will be primary ST-segment elevation. In clinical recordings, the contributions of diastolic and systolic injury currents to the observed ST-segment elevation cannot be determined (see text).

 Reciprocal ST-segment depression in leads reflecting contralateral surface of heart

decreased R wave amplitude or Q waves

 posterior or lateral infarction - increase R wave amplitude in lead V1 and sometimes V2

- infarction size -
 - amount of ST segment elevation and depression
 - number of leads in which these changes are present

D

AWMI (Anteroseptal zone)

Types of LAD occlusion

- Proximal to 1st septal and 1st diagonal branch
- Distal to S and D
- Proximal to D1 but distal to S1
- Proximal to S1 but distal to D1
- Selective D1–D2occlusion
- Selective S1–S2 occlusion

- STE in V2, V3, V4
- Behaviour of ST in other leads depends on the presence of ischemia in three vectorally opposite areas
 - –Basoseptal area (1st septal branch)
 - Basolateral area (1st diagonal branch)
 - Inferoapical area (when LAD wraps around apex)

Proximal LAD occlusion

- Injury vector -
 - anteriorly and upward
 - to the right or the left,

(depending on whether septal – the most frequent or lateral involvement predominates)

- ST-segment elevation from V1 to V4, and in aVR
- anterolateral area predominant ST elevation also seen in aVL and I

Proximal LAD occlusion (Dominance of Basal area)

- ST depression in the inferior wall (III +aVF ≥2.5 mm) is quite suggestive of a proximal occlusion of LAD above D1
- ST \uparrow aVR and V1 + ST \downarrow V6 > 0 : occlusion above S1
- STE aVR and STE in V1 \ge 2.5 mm
- ST depression in inferior leads and in V5
- Abnormal Q in aVL

Occlusion proximal to D1 branch but distal to the S1 branch

injury vector is directed anteriorly, upward, and somewhat to the left

- ST-segment elevation from V2-3 to V5-6 but not usually in V1
- ST elevation in lead I and especially in aVL
- ST-segment depression in the inferior leads (III+aVF≥2.5mm)
- ST depression in III > II

Occlusion proximal to the S1 branch but distal to the D1 branch

injury vector is directed anteriorly, to the right (and sometimes downward, especially if the LAD is long and wraps around the apex)

ST-segment elevation from V1 to V4

 isoelectric or elevated ST-segment in the inferior leads (III than in II)

- ST-segment depression in V6 and aVL (highly specific)
- STE in V3R

selective occlusion of the D1 branch

injury vector is directed upward, to the left and forward

ST-segment elevation in I, aVL

ST-segment elevation in V2-3 to V5-6

 ST-segment depression in II, III, and VF (III > II)

selective occlusion of the S1 branch

injury vector is directed anteriorly, upward, and to the right

 ST-segment elevation in V1, V2, and aVR

 ST depression in II, III,aVF(II>III)

 lack of ST elevation in aVL

Occlusion distal to the S1 and D1 branches

injury vector is directed anteriorly and often rather to the left (to the apex), but not upward

Long LAD: injury vector directed downward

- STsegment elevation fromV2-3 toV4-6 but not inV1
- slight ST-segment depression in aVR and elevation in II, III, and VF (II > III)

Leads	RCA (proximal RCA)	LAD [†]
V_1 to V_{3-4}	Usually ST \uparrow (V ₁ > V ₃₋₄)*	Usually ST \uparrow (V ₃₋₄ > V ₁)
Inferior leads	Usually ST↑ greater than that in precordial leads	ST↑ usually much lesser than that in precordial leads
I and aVL	ST depresssion (usually the sum \geq 5 mm)	Usually not ST depression especially in I

Table 2 ST elevation in precordial leads (especially V1 to V3-4) and inferior leads (II, III, VF).

* In exceptional cases of very dominant RCA occluded proximally, the ST elevation may be seen in all the precordial leads. In V_1 to V_{3-4} due to proximal occlusion and in V_{5-6} due to very dominant RCA (local injury vector) (see Figure 28 and Case 12).

[†] Distal occlusion of long LAD or distal occlusion of LAD + total occlusion of RCA with colateral vessels.

$ST \uparrow_{V1} > 2.5 \text{ mm}$	proximal to S1
cRBBB	proximal to S1
ST ↑ _{aVR}	proximal to S1
$ST \downarrow_{V5}$	proximal to S1
QaVL	proximal to D1
Inferior ST $\downarrow \geq 1.0 \text{ mm}$	proximal to S1/D1
Q_V4-6	distal to S1
$ST \downarrow_{aVL}$	distal to D1
Absence of inferior $ST \downarrow$	distal to S1/D1

 Table 4. Electrocardiographic Predictors of LAD Occlusion Site

a Most prominent pattern of ST elevation in precordial leads I and aVL* (anteroseptal zone)

Occluded artery	Injured myocardial area (see Figure 7)	Leads with ST changes
1. LAD occlusion proximal to D ₁ and S ₁	Extensive anteroseptal zone (especially 1, 2, 7, 8, 13, 14, 16, and 17 segments)	 ST↑ in V₁ to V₄→5 and aVR ST↓ in II, III, aAVF, and often V5→6
2. LAD occlusion proximal to D ₁ but distal to S ₁	Anteroseptal or extensive anterior (especially 1, 7, 13, 14, 16, and 17 segments)	 ST↑ in V₂ to V₅–6, I, VL ST↓ in II, III, and aVF
3. LAD occlusion distal to D ₁ and S ₁	Apical (especially 13, 14, 15, 16, 17, and part of 7 and 8 segments)	 ST↑ in V₂ to V₄-5 ST↑ or = in II, III, and aVF If LAD is short less evident changes

Occluded artery	Injured myocardial area (see Figure 7)	Leads with ST changes
 LAD occlusion proximal to S₁ but distal to D₁ 	Anteroseptal (especially 2, 8, 13, 14, 15, 16, and 17 segments)	 ST↑ in V₁to V₄, V₅, and aVR ST↑ or = in II, III, and aVR ST↓ in V₆
 LAD subocclusion including D₁ but not S₁, or selective D₁ occlusion 	Anterolateral limited (especially 7, 13, 12, and part of 1 and 16 segments)	 ST↑ in I, aVL, and sometimes V₂-V₅₋₆ ST↓ in II, III, aVF (III > II)
 LAD subocclusion including S₁ but not D₁, or selective S₁ occlusion 	Septal (especially 2, 8, and sometimes part of 1, 3, 9, 14 segments)	 ST↑ in V₁₋₂, aVR ST↓ in I, II, III, aVF, V₆ (II > III)

	Name	Туре	ECG pattern	Infarction area (CE-CMR)	Most probable place of occlusion
	Septal	A1	Q in V ₁ -V ₂ SE: 100% SP: 97%	$ \begin{array}{c} 1 \\ 7 \\ 8 \\ 13 \\ 14 \\ 17 \\ 16 \\ 3 \\ 9 \\ 15 \\ 11 \\ 5 \\ 4 \\ 15 \\ 10 \\ 4 \\ 15 \\ 10 \\ 4 \\ 15 \\ 10 \\ 10 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	LAD S1 D1
eptal zone	Apical anterior	A2	Q in V ₁ -V ₂ to V ₃ -V ₆ SE: 85% SP: 98%	$ \begin{array}{c} $	LAD S1 D1
Anteros	Extensive anterior	A3	Q in V ₁ -V ₂ to V ₄ -V ₆ , I and aVL SE: 83% SP: 100%	1 2 8 13 12 6 3 9 15 11 5 4 12 12 12 12 12 13 12 12 13 12 12 13 12 12 13 12 13 12 13 12 13 13 12 13 13 12 13 13 13 13 13 13 13 13 13 13	LAD S1 D1
	Mid- anterior	Α4	Q (qs or qr) in aVL (I) and sometimes in V ₂ -V ₃ SE: 67% SP: 100%	$ \begin{array}{c} 1 \\ 2 \\ 8 \\ 14 \\ 17 \\ 12 \\ 6 \\ 3 \\ 9 \\ 15 \\ 10 \\ 4 \\ 10 \\ 4 \\ 10 \\ 4 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	LAD S1 D1

* Cases with ST depression < 2.5 mm are difficult to classify in respect to D1, but if Σ^{\uparrow} ST aVR + V₁ + \downarrow ST V₆ < 0, are usually distal to S1.

FIGURE 12-59. Algorithm to precisely locate the left anterior descending (LAD) occlusion in the case of an evolving myocardial infarction with ST elevation in precordial leads (see the text for details).

IWMI (Inferolateral zone)

- RCA occlusion proximal to the RV branches
- RCA occlusion distal to the RV branches
- Very dominant RCA occlusion
- LCX occlusion proximal to first OM branches
- First OM occlusion
- Very dominant LCX occlusion

Circumflex coronary

Inferoseptal ischemia	Inferoposterolateral ischemia
Vector directed to III	Directed to II
STE III > II	STE II > III
ST depression in aVL>I	STE I or aVL or both
RV can be involved	True PWMI can occur

V5 and V6 are of little value in differentiating between RCA or Cx occlusion. STE in these leads implies a larger area at risk

- In case of LCX occlusion posterior wall involvement is almost obligatory
- Absence of precordial ST depression in inferior wall infarction is therefore strongly suggestive of RCA involvement

RCA occlusion proximal to the RV branches

 injury vector always directed downward, posteriorly, and to the right

- ST-segment elevation in II, III, and aVF (III>II)
- ST-segment depression in V6, I, and aVL (aVL > I)
- ST-segment depression in V1-3 is generally absent
- ST-segment elevation V3R and V4R
- V4R: distinguishing between occlusion of the RCA proximal to the RV branch from an occlusion of the RCA distal to the RV branch and from an occlusion of the LCX

Proximal RCA Occlusion

- ST-elevation > 1 mm
- +ve T wave

Distal RCA Occlusion

- No ST-elevation
- +ve T wave

LCx Occlusion

- ST-depression > 1 mm
- -ve T wave

RCA occlusion distal to the RV branches

 injury vector is directed downward, to the right (less so than occlusion proximal to the RV branches), and posteriorly (more downward than posteriorly)

- more ST-segment elevation in II, III, and VF (III > II) than ST-segment depression in V1-3
- ST-segment depression in lead V6, I, and even more in aVL

Very dominant RCA occlusion

 injury vector is directed downward and posteriorly and to the right

 In presence of occlusion proximal to the RV branches, the injury vector more directed to right(may fall in the positive hemifield of V1)

- ST isoelectric or having slight elevation in V1 and sometimes elevated in V2-4 occlusion proximal to RV branches
- occlusion distal to the RV branches ST depression in V1-3
- ST-segment elevation ≥2 mm is usually seen in V5–6 (local injury vector)

LCX occlusion proximal to first OM branches

 injury vector is directed leftward and more posteriorly than downward

ST elevation in II is greater than or equal to that in III

 ST-segment depression in V1-3 of a higher voltage than the ST elevation in II, III, and aVF

Occlusion of the first OM branch

- injury vector is directed to the left and somewhat posteriorly
- as well as somewhat upward or downward

- Slight ST-segment elevation in lateral wall leads (I, aVL, V5–6) and sometimes also in the inferior leads (especially II and aVF)
- slight ST-segment depression maybe seen fromV1 toV3 (in contrast to first diagonal branch occlusion-injury vector anteriorly)

OM VS D1 occlusion

D1

Injury vector left,
 posterior, some what
 upward or downward

OM

- STE I, aVL, and V5–6
- STE may in II and aVF
- <u>Slight STD in V1-V3</u>

- Injury vector is directed
 leftward, but upward and
 somewhat *anteriorly*
- STE I, aVL, and V5–6
- <u>STE in precordial leads</u>
- ST-depression II, III, aVF

Occlusion of a very dominant LCX

 injury vector is located often in the FP between+60°and +90°-- may fall in the negative hemifield of aVL but is usually still in the positive hemifield of lead I

- ST-segment elevation in II, III, and VF often smaller than ST depression in V1–3
- If ST elevation in II, III, and aVF is equal or superior to ST depression in V1-3, usually the ST elevation in II is greater than that in III and in lead I there is no clear ST depression (in contrast to proximal occlusion of a very dominant RCA)

 ST elevation in V5–6 in the occlusion of a very dominant LCX more evident than in a case of a very dominant RCA

 Distal occlusion of a very dominant LCX ECG characteristics very similar to distal occlusion of a short RCA

Occluded artery (RCA vs LCX)	Injured myocardial wall (see Figure 7)	Leads with ST changes	
7. RCA occlusion proximal to the RV branches	Same as type 8 plus injury of RV	 ST↑ in II, III, and aVF with III > II ST↓ in I, aVL ST↑ in V₄R with T+ ST isoelectric or elevated in V₁ 	
8. RCA occlusion distal to the RV branches	Inferior wall and/or the inferior part of the septum (especially 3, 4, 9, 10, 14, and 15 segments)	 ST↑ in II, III, and aVF with III > II ST↓ in I and aVL ST↓ in V₁₋₃ but if affected zone is very small, almost no ST↓ in V₁₋₂ 	
9. Very dominant RCA occlusion	Great part of inferolateral zone (especially 3, 4, 5, 9, 10, 11, 14, 15, 16, and 17 segments). Injury of RV if RCA is proximally occluded	 ST↑ in II, III, aVF with III > II ST↓ in V₁₋₃ < ST↑ in II, III, aVF. If the RCA is proximally occluded ST in V₁₋₃ is = or ↑ ST↓ in I and aVL with VL > V1 ST↑ in V₅₋₆ ≥ 2 mm 	

b Most prominent pattern of ST elevation in inferior and/or lateral leads[†] (inferolateral zone)

Occluded artery (RCA vs LCX)	Injured myocardial wall (see Figure 7)	Leads with ST changes	
10. LCX occlusion proximal to first OM branches	Lateral wall and inferior wall, especially the inferobasal segment (espe- cially 4, 5, 6, 10, 11, 12 segments)	 ST↓ in V₁₋₃ (mirror image) greater than ST↑ in inferior leads ST↑ in II, III, aVF (II > III) Usually, ST↑ in V₅₋₆ ST↑ in I, VL (I > VL) 	
11. First OM occlusion	Lateral wall (especially 6, 12, and 16 segments)	 Often ST ↑ in I, aVL, V₅₋₆ and/or in II, III, aVF. Usually slight Often slight ST ↓ in V₁₋₃ 	
12. Very dominant LCX occlusion	Great part of inferolateral zone (especially 3, 4, 5, 6, 9, 10, 11, 12, 15 and 16 segments)	 ST ↑ in II, III, aVF (II ≥ III) often greater than ST ↓ in V₁₋₃ The ST may be depressed in aVL but usually not in I ST elevation in V₅₋₆ is sometimes very evident 	

b Most prominent pattern of ST elevation in inferior and/or lateral leads[†] (inferolateral zone)

	Lateral	B1	RS in V_1 - V_2 and/or Q wave in leads I, aVL, V_6 and/or diminished R wave in V_6 SE: 67% SP: 99%	$ \begin{array}{r} 1\\ 2\\ 8\\ 13\\ 14\\ 17\\ 16\\ 3\\ 9\\ 15\\ 11\\ 5\\ 4\\ 10\\ 4\\ 10\\ 4\\ 10\\ 15\\ 11\\ 5\\ 10\\ 4\\ 10\\ 15\\ 11\\ 5\\ 10\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 15\\ 10\\ 10\\ 15\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	LCX
Inferolateral zone	Inferior	B2	Q in II, III, aVF SE: 88% SP: 97%	$ \begin{array}{r} 1\\ 2\\ 8\\ 13\\ 14\\ 17\\ 16\\ 3\\ 9\\ 15\\ 10\\ 4\\ 15\\ 10\\ 4\\ 15\\ 10\\ 4\\ 15\\ 10\\ 4\\ 15\\ 10\\ 15\\ 15\\ 10\\ 10\\ 15\\ 10\\ 10\\ 15\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	RCA LCX
	Infero- lateral	B3	Q in II, III, Vf (B2) and Q in I, VL, V_5 - V_6 and/or RS in V ₁ (B1) SE: 73% SP: 98%	$ \begin{array}{c} 1\\ 2\\ 8\\ 13\\ 14\\ 17\\ 16\\ 1\\ 1\\ 3\\ 15\\ 10\\ 4\\ 10\\ 4\\ 15\\ 10\\ 4\\ 15\\ 10\\ 4\\ 15\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	RCA LCX

Kosuge M, Kimura K, Ishikawa T et al. New electrocardiographic criteria for predicting the culprit artery in inferior wall acute myocardial infarction. Am J Cardiol, 1998; 82: 1318–1322

Isolated RVMI

Minor changes in inferior leads, but STE prominent in leads V1 and V2 and right precordial leads (V3R and V4R)

• Due to either a small or collaterally filled RCA or an occlusion of an RV branch only

PWMI

- Can occur both in RCA and Cx artery involvement
- ST depression in the precordial leads
- May extend from V1 to V6 and indicate larger MI
- Maximal ST depression in V4 V6 is seen more in three vessel disease and lower LVEF

True PWMI

• ST depression in V1, R/S > 1, and upright T wave

Left main stem occlusion or triple vessel disease

 Lead aVR ST segment elevation with less ST segment elevation in lead V1(81% sensitivity, 80%specificity)

Yamaji H et al J Am Coll Cardiol 2001;38:1348-1354

- Marked down sloping ST depression in I, II, and V4 – V6
- High mortality rate in those with higher STE in aVr

de Winter sign

 ST-segment depression at the J-point with upsloping ST-segments and tall, symmetrical T-waves in the precordial leads

AV conduction disturbances

- AV nodal delay and block occurs with proximal RCA invt, frequently with RVMI
- Higher in-hospital morbidity & mortality
Sub AV conduction disturbances

- RBBB with or without hemiblock during acute AWMI indicates proximal LAD
- BBB or CHB indicates poor prognosis
- LAHB in acute IWMI indicates additional LAD disease

Atrial infarction

- Signs of atrial MI are seen in PTa segment
- PTa segment elevation occurs in I, II, III, V5 or V6 or a depression in precordial leads
- Occurs in 10 % of inferoposterior MI
- Isolated occurrence is rare
- Proximal RCA or Cx

Limitations

- Assessment of the site of occlusion of coronary vessel by ECG is most reliable in case of 1st MI
- Impaired
 - Multivessel disease
 - Collateral circulation
 - When ventricular activation is prolonged as in
 - LVH
 - Preexistent LBBB
 - Preexcitation
 - Paced rhythm

THANK YOU